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A PAI~ALLEL MULTIGP~ID PRECONDITIONED CONJUGATE GRADIENT
ALGORITHM FOP~ GI~OUNDWATER FLOV~ SIMULATIONS*

STEVEN F. ASHBYt AND ROBEI~T D. FALGOUT$

Abstract. This paper discusses the numerical simulation of groundwater flow through heterogeneous porous
media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of
conjugate gradients, which is nsed to compute the pressure head. The numerical investigation considers the
effects of boundary conditions, coarse grid solver strategy, increasing the grid resolution, enlarging the domain,
and varying the geostatistical parameters used to define the subsurface realization. Scalability is also examined.
The results were obtained using the PA~tFLow groundwater flow simulator on the CKAY T3D m~sively parallel
computer.
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1. Motivation. The numerical simulation of subsurface fluid flow and chemical migration
plays an increasingly important role in several environmental applications, including ground-
water remediation studies and groundwater resource management. Although sophisticated
simulations have been used for decades in the petroleum industry with considerable success,
they have bccn less widcly used in environmental applications, but they are gaining in popu-
la.rity as sites become larger and more complex. Computational environmental remediation is
particularly attractive for the design, evaluation, and management of engineered rcmediation
procedures [24], especially for large industrial and government sites. Simulations can be used,
for instance, to choose the best cleanup strategy for a given site, and then, once a scheme is
chosen, to manage it in the most cost effective fashion. They also can be used to perform more
realistic risk assessment in support of key decision-making, as well as an aid in de~nonstrating
regulatory compliance.

Mathematically, the key to such simulations is the solution of the large, sparse system of
linear equations resulting from the discretization of a second order elliptic partial differential
equation with a widely varying coefficient function. The solution of this system yields the sub-
surface fluid flow velocities, which are then used to track groundwater flow and contaminant
,nigration. In this paper, we introduce a multigrid preconditioned conjug~.te gradient algorithm
for solving these systems, and we investigate its performance on a variety of realistic problems.
Since we are interested in detailed si~nulations with millions of spatial zones, we employ mas-
sively parallel processing power. In particular, we will describe the parallel implementation and
performance of our algorithm on the CRAY T3D computer.

1.1. The need for improved modeling. Many of the computer codes in use today make
unrealistic assumptions about the nature of the subsurface ~ncdium and the associated flow
behavior. For example, many codes assume that the subsurface is homogeneous in co~nposition
and spatial distribution, and ignore altogether variations in the vertical dimension. As a result,
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these codes may fail to represent accurately many important processes. Consequently, the
conclusions drawn from simub~tions made with these (..odes arc open to question, as are the
decisions based on these conclusions.

In reality, the subsurface is three-dimensional and heterogeneous. This means that some
regions of the subsurface are more l)er~neable~.~ to w~ter flow than ott~(..rs;,., this is~ represented by
a spatially variable flow parameter known as the hydraulic conductivity. The heterogeneous
nature of the subsurface gives rise to preferential flow channels in the subsurikce wdocity iield,
which can have a dramatic impact on fluid flow and contaminant transport [1, 3]. For example.
these channels can lead to "fingering" in contaminant migration, that is, nonuniform dispersion
over time. It is essential to resolve this behavior because it can drastically ~lter the conclusions
one makes about a gi,~cn rcmcdiation procedure. For example, a honmgeneous model may yield
simulations that predict th~tt the procedure under study will meet regulatory requircnmnts.
However, a more accurate heterogeneous model (with ad~quate resolution) may predict the
opposite. Regulatory agencies arc now rccogniziug this and demanding the increased use of
detailed, threc..dimensional modeling.

1.2. ~ he role of high performance computing. Researchers have recognized the d(,-
ficiencies of the simplified homogeneous codes for s~me time, but have been unable to consider
running more realistic simulatious until receutlv. Current simulations often lack sufficient spa-
tial resolution (to capture fingering) bc(:;~use of a paucity, of snbsurface d;~ta and the iuabilitv
to solve the resulting problems on even the largest of conve~tioual vector supercomputers.

~ hc sizc of the site. to be modeled (t) pically s(.v(,ral square kilometers) and the need 
solve these hctcrogcncitics adequately (on the, order of meters), leads to co~nputational domains
with upwards of one billion spatial zones. "i he use of adaptive gridding and local refinement
c~n reduce the total number of zones needed by one or two orders of magnitude, but one is s~ill
left with huge problems that quickly overwhelm all but the largest of conventional supercom-
putcrs. Moreover, we need to run huudreds of such simulation~ as we conduct time-dependent
studies, exa.miuc different rcmcdiation or production strategies, or run t.h(~ code in a Monte
C~rlo" fashion or within an optimization code. In li~ht of these considerations, it is necessa.rv
to employ massively parallel processing~ po~cr,’" and toward this cud, we are building a parallel
flow simulator called PAn.Y’~LOW. It is designed to be portable ~tnd scab~blc across t~ variety of
distributed memory MIMD machir~es with message passing, ranging from workstation clusters

~Iassi~ly parallel processing ma~ be neeessar~ t~r detailed simulations, but it is not suf-
ficient. One also needs to employ,,, high performanc(.,’,~ al~orithm.% that is, accurate and Nst
numerical techniques that can be implemented efficiently on these machines. As we will see,
simply changing the linear solver can result in two orders of magnitude reduction in CPU time.
This is especially important i~ time-dependent simulations, where the right numerical method
can ~nc~n the di~bren(:e between a 30-h.our run ~nd a 30-mi.n.ute run on an MPP.

.1.3. Overview of paper. In this paper, we will investigate tht~ pertbrm~mcc of a para.llel
multigrid preconditioner for accelerating convergence~, of conjugat(.’, gradients, which is used to
compute a pressure quantity. Our mmmrical investigation considers~, the effects of boundary
conditions, coarse grid solver strategy, increasing the grid resolution, enlarging the domain,
aud varying the geostatistical l)aramcters used to define the ~ubsurface realization. Scalability

is also examined. The results x~crc obtained using the I hit[ LO~ groundwater ilox~ simulator
on the CRAY T3D massivcL, parallel computer.

The paper is organized as follows: W(.’, present our mi~themati(:~l model and numerical
discrctization in []2. Tt~e ~nultigrid prcconditioucd conjugate gr~dicnt algorithm is dcs(:ribcd in
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detail in §3, and its ilnplementation is discussed in §4. The results of our numerical inv’estigation
and parallel perforr~ance study are given in §5.

2. Numerical simulation of groundwater flow. We consider steady state saturated
(i.e., single phase) flow, which is of practical interest because contaminant transport is most
rapid in this region. It is essential that we be able to solve such problems quickly and accurately
because a similar elliptic problem will constitute the main computational cost of the multiphase,
time-dependent simulations in which we are ultimately interested. In particular, we need an effi-
cient and scalable elliptic solver, which we have found in the multigrid preconditioned conjugate
gradient algorithm described in this paper.

Our mathematical model of groundwater flow is based on Darcy’s law and conservation of
mass in a porous medium, which may be co~nbincd and rewritten as

(2.1) -V.(KV(h-bz))-Q 

where h is the pressure head~ K is the hydraulic conductivity (i.e., problem specification), and
Q is a source term (used to represent pumping wells, for example). At present, the problem
domain is ~ssumed to be a parallelcpiped; the boundary conditions may be Dirichlet or flux.

The hydraulic conductivity realization is central to the problem definition; it is embodied
in the K function in equation (2.1). Of course, one never has enough data (i.e., direct ~neasure-
ments) to characterize a given site completely (i.e., to completely specify K). To develop 
detailed subsurface characterization needed for the type of simulation described above, hydro-
geologists typically employ gcostatistical techniques to create statistically accurate realizations
of key subsurface properties, particularly the hydraulic conductivity [23]. Monte Carlo and op-
timization techniques can be used to quantify the inherent uncertainty and enable site managers
to perform more realistic risk assessments. Although these realizations cammt give the precise
wflue of the hydraulic conductSvity at an (x, y, z) coordinate, they do reproduce the statistical
patterns of heterogeneity observed in real syste~ns, and can be used to evaluate various reme-
diation strategies, say, determining the optimal pumping configuration in a pump-and-treat
scheme.

We use Tompson’s turning bands algorithm [23] to generate K. This is a technique for
computing a spectral random field with given statistical properties. Specifically, one specifies
geometric mean p. for the K field, a variance a~ for the ln(K) field, and correlation lengths
A~, and Az. See [23] for a description of the turning bands algorithm, and see [6] for a discussion
of its parallel implementation.

The heterogeneous nature of the subsurface manifests itself in the variability of K, that is, in
the variability of the coefficient function for the elliptic PDE. In practice, this coefficient function
may vary by as many as ten orders of magnitude, and so the function is effectively discontinuous.
This results in an ill-conditioned linear system. In designing our multigrid algorithm, we must
bc careful to consider the discontinuous nature of the function when defining the interpolation
and rcstriction operators, as well as the coarse grid operator.

2.1. Discrete solution approach. We employ a standard 7-point finite volume spatial
discretization on a uniform mesh. After discretization, we obtain a large system of linear
equations, Ah = f. The coefficient matrix A is symmetric positive definite and has the usual
seven stripe pattern. The matrix has order N -- n= x ny x nz, where the ni arc the number
of grid points in the x, y, and z directions, respectively. For problems of interest, N is in
the millions; the large number is dictated by the size of the physical site and the need to
resolve heterogcncitics adequately. Once the pressure head is computed, the velocity field can



be calculated easily using a simple differencing scheme. This field is then passed to a transport
code to simulate contaminant migratiozt.

The solutio~t of the large linear system is computationally intcnsive and must be done
efficiently and accurately. Since we are interested in detailed simulations (i.e., high resolution),
we must use a.~~ iterative scheme. Within the hydrology community, the most com~nonly used
methods arc SIP and SSOR. Recently, however, th,~ nmrc powerful conjugate gradient method
(CGHS) [17], and its preconditioned version (PCG) [10], haw~ been ~Jsed with great success.
For example, polynomial preconditio~md conjugate gradients was shown [19] to be an order of
magnitude faster th~n SIP ~md SSOR.

Multigrid algorithms also are attractive tbr these types of problems. These techniques
are among the fastest currently awil~ble for the solution of linear systems arising frorn the
discretization of elliptic partial differential equations. Dnlike most other iterati~e methods, a
good ~nultigrid solver’s rate of convergence is indcpe~dent of problem size, meaning that the
number of iterations remains fairly, constant. Hcnce,- both the multi~rid algorithm ~md its
p~rallel implementation ~rc highly scalable (see ~4.1). On the other hand, multigrid (MG)

~ r ~ r Ralgorithms tend to be problem specific and les~ robust than Kr~lov it.crati~e method., such
as conjugate gradients (CG). Fortunately, it is easy to combine the best features of MG and
CG into one algorithm: ~nultigrid preconditioned col~]ugate gr~tdicnts (MGCG). The resulting
algorithm is robust, efficient, and scalable. Another advantage of this approach is that one can
quickly implement a simple multigrid algorithm tha.t is extremely effective as a preconditioncr,
but perhaps less effective as a stand..alonc solver. This is especially w~lu~ble when the underlying
PDE has a nearly discontinuous coefficient function, as in our case.

In this paper, we present results for multigrid and 2-step .Jacobi prcconditionings. Our
emphasis will be on the multigrid preconditioner described in the next section. The 2-step
Jacobi preconditioncr is implemented via an im~cr iteration consisting of ~wo steps of the basic
Jacobi method; see, e.g., [15, pages 384-385] for details.

3. The MGCG algorithm. In this section, we define our multigrid preconditioncd conju-
gate gradient algorithm, MGCG. We first describe the MG preconditioncr, the key components
of which arc discussed in each of the following sections. These include: the co~rsening strategy;
the prolongation and restriction operators, P aml R; the coarse grid operator, A¢; the smoother,
S; and the coarsest grid solver.

’.r. hc 2-level MG ,~lgorithm is dciincd as follows:

for i = 0, 1,... mltil convergence:

(3.1a) h- = S(hi, A, f, m)

(3.15) rC’= R(f -Ah-)

(3.1c) cc= (.4~)-ir’:

(3.1d) h+ = h- -I- Pc’~

(3.1.e~" hi+1 = S(h-’-, A, f, m)

~

end for

In (3.1a) we. perform m smoothing steps on the fine syste~n of equations (we choose m 
in this p~pcr). ~. the~ restrict the residual to the. cot~rsc grid in (3.1b). In step (3.1c) 
solve the co~rsc s~,stem of equations, yielding a co~rse grid approximation to the fine grid
error. This coarse grid error is then prolonged (i.e., ~nterpolatcd) to the fine grid, and added
to the current fi~m grid solution approximation in step (3.1d). Finally, in (3.1c), we carry 
m more snmothing steps on the fi~e system of equations. Steps (3.1b)-(3.1d) together 



called the correction step, and the above algorithra describes a 2-level multigrid V-cycle. The
full multilevel algorithm is defined by recursivcly applying the 2-level method to the system of
equations in (3.1c). In other words, instead of solving (3.1c) exactly, we obtain an approximate
solution by applying one V-cycle of the 2-level algorithm. This yields a new, coarser system
of equations, which we may also solve approximately by applying thc 2-level algorithm. This
process is continued until we reach some coarsest system of equations, which is then solved to
complete the V-cycle.

Before wc continue, we need to introduce some notation. The fine grid matrix A has the
following stencil structv.re:

(3.2) A = [ aL- i,j,k ]

~N
~ i,j,k

aW C E
-- i,j,k ai,j,k --ai,j,k

-- i,j,k

aU-- i,j,k ]

where W, E, S, N, L, U, and C are used mnemonically to stand for west, east, south, north,
lower, upper, and center, respectively. Now, split A such that

(3.3) A = T + B

where

0

W aE
--ai,j, k ~i,j,k --"i,j,k

0

[o]

(3.5) B = [ aL-- i,j,k ]

~N
-- i,j,k

0 bid,~

aS-- i,j,k

-- i,j,k ]

and where

ti,j,k = a~,j,k - bij,k
S aN

Note that A is split in the x direction: T contains the off-diagonal coefficients of A corresponding
to the x direction and B describes the coupling in the y and z directions. We sirailarly split A
in the y and z directions, but for clarity, we will use only the above x splitting in the discourse
that follows.

3.1. Heuristic semi-coarsening strategy. Because the ground subsurface is generally
stratified in nature, our computational grids typically have skewed cell aspect ratios. This
produces anisotropy in the problem which causes "standard" MG algorithms to converge slowly.
To ameliorate this problem, we employ a semi-coarsening strategy in which the grid is coarsened



fine grid coarse grid

FIO. 3.1. Semi-coarscniug in the ¯ direction.

ill one spatial direction at a time. Semi-coarsening in the x direction is illustrated in Figure 3.1:
the coarse grid is defined by taking every other yz plane.

To determine the direction of semi-coarsening, we use a heuristic, based on the grid spa.c-.
ing. The algorithm chooses a direction with smallest spacing (i.e., strongest coupling). If this
minilnum spacing occurs in one or more directim~s, the algorithm attempts to coarsen first in
x, then in y, and finally in z. One important issue in this schc~n~ is dct, ermining how and when
to terminate the coarsening algorithm. As we will see in ~5, these issues ca.n have a dramatic
impact on the perform~mce of the MG algorithm. The results presented there indicate that, in
our MG algorithm, semi-coarsening down to a I. ~ 1 x 1 grid is optima.l for typical groundwater
probltm~s.

in our nmnerical experiments, wc show that this scmi-c.oarsening strategy cKk~ctively ame-
liorates anisotropies due to large grid cell aspect ratios. However, it does not take into account
anisotropics in the rock matrix (i.e., tim permcabilit,y tensor). W~ are currently investigating
this issue, especially the relevant work discussed in [13, 16, 20, 21].

3.2. Operator-induced prolongation and restriction. One of the keys to a successful
multigrid algorithm is the definition of the prolongation operator, P, which defines how vectors
on a coarse grid are mapped om.o the next finer grid. In the case of constant coeificient elliptic
PDEs, P is usually detlncd via a simple interpolation scheme. However, when the coctticient
flmction wtries greatly, as in our problem, this is inadequate. Instead, one should use operator-
induced prolongation, meaning that P is defined in terms of the coefficients of the fine grid
matrix. Our prolongation operator is similar to those described in [2, 11, 14].

To elucidate, consider the prolongation of an error vector, e", from the coarse grid, ~7’:, to
the fine grid, ~. For the sake of discussion, let us assume that ~7c is obtained by coarsening ~
in the x direction, as in Figure 3.1. (To bc precise, we actually haw~ prolongation operators 1~,
~, and P~, corrt~spomling to each of the directions of semi-coarsening, but we will drop the
subscripts for clarity below.) l’rolongation is [hcn defined by

(3.(J) p:.c m ~i,j’kVi-l,~,k. . + Pi,j,kQ+l,i,k. ~ Xi,j,k ~ ~/ ~

where

il" I.l"
1~i,j,k = ai,j,k/ti,j,k

E E
Pi,j,/,- = a.i,j,k / t i,j,k .

in other words, at points on the fine grkl that are ?~,o/, also on the c.oa, rsc grid, the value
of tile prolonged error vector is defined as a weighted average of x-adjac, ent coarse grid error
components. At points on the fine grid that arc ~flso on the coarse grid, the wtluc of the prolonged



error vector is the same as the corresponding coarse grid error component. Prolongation in y
and z is defined analogously.

The restriction operator, R, is used to project from a fine grid to a coarse grid. As is
commonly done, we define R = pT.

3.3. Definition of coarse grid operator. Another important issue in multigrid is the
definition of the coarse grid operator, A~. In the literature, this matrix is often taken to be the
Galerkin matrix, P~AP. This choice for A~ is optimal in the sense that the quantity Ile+Pe~lln
is minimized over all coarse grid vectors ec. That is, after a multigrid correction step, the error
in the approximate solution is minimized in the A-norm for a given choice of prolongation
operator, P. In particular, if the error before correction is in the range of prolongation, then
the correction step yields the e~act solution. The drawback of this coarse grid operator is that
it has a 27-point stencil, which requires additional storage and does not allow us to define the
multi-level algorith~n by recursively applying the 2-level algorithm.

Another way to define Ac is to re-discretize the differential equation on the coarse grid.
This has the benefit of yielding a 7-point stencil structure, which requires less storage than the
27-point stencil, and allows recursive definition of a multi-level algorithm. On the other hand,
this operator lacks the minimization property of the Galerkin operator.

In our algorithm, we attempt to combine the best of both approaches by algebraically
defining Ac as (again assuming semi-coarsening in the x direction)

(3.7)

where

(3.8)

A~ = T~ + B~

Tc = pTTp = [0 ]

0

-~{j,} tij,~ -aij,~

0

[o]

and

c,W W W

c,E E E
ai,j,~ = a~,j,kP~+ ld,k

c 6~14" ~ E E W

c,N
-- ai,j,k

0 b~j,k

--ai,i,k

-aid,k ]

c,S S
aij,~ = a~j,~ +

c,N N
ai,], k = ai,j, k ~-
c,L = aLa~j,~ ~,~,~ +

c,U U
aid,~

= ai,j, k -5

hi,j, k = ai,j, k -[-

Is ls
~a~_~,i,} + ~a~+~,~,}

IN 1N

IL IL .

-~ai_ld,k + -~a~+,j,a
1u 1u

c,N c,L c,U
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harmonic average

~
fine grid

weighted average

coarse grid

3.2. Definition of the coarse grid operator ($-d illustration with x semi-coarsening).

In other words, A’: is a Go Jerkin operator in x (the direction of semi-coarsening) plus a weighted
sum of y and z stencil coefficients. The coefficients in (3.9) describe the connections in y and 
of the coarse grid variables, and our reason for choosing these particular weights is illustrated
below.

Away from the domain boundaries, the algebraic definition of A’: in (3.7)-(3.9) also may 
interpreted geometrically as the result of a finite volume discrctization of (2.1) on the coarse grid
6¢:. Consider the grid point xn~rked %" in Figure 3.2 (where we illustr~tc only two dimensions
for simplicity). The finite volume discrctiz~tion rcquircs hydraulic conductivity values on the
cell faces about this grid point. 2b generate the matrix coefficients, these v~lucs are first
~nultiplied by the area of the cell face, then divided by the grid spacing in the perpendicular
direction. So, if grid point "o" in Figure 3.2 has index (i,j, k), then on the fine grid we have

(3.10) w AyAz _.
(Zi,j, k = ~ . 1( i- t/~,j,k

AyAz _.
a.~j,~ = S~

AxAz _.

AxAz _.
~y

Now, consider the finite volmne discretization on the co~rse grid. We first compute hydraulic
conductivity values on coarse-grid cell faces as in Figure 3.2; for vertical faces, we take a
harmonic ~vcragc of values on adjacent fine-grid cell faces, and for horizontal cell faces, we ta.ke
~n ~rithmetic ~vcrage of v~lues on corresponding fine-grid cell faces. Since the x grid spacing
on ~c is twice that on ~, we have that

(3.11) ~,,.t’
AY~Z(2IQ-~/~,~,klfi-V~,j,~)-

i . 1

aij,~"~’_ 2AxAZAy (~Ki,~+v~,k -F ~IQ_~,j+~/~,~ + JI(i+~,j+~/e,~) 
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Using (3.10) in (3.11), and noting 

W E

holds in the middle of the domain, it is easy to see that the coefficients produced by this finite
volume discrctization on the coarse grid are the same as those given in (3.7)-(3.9).

~1.4. Smoothers. The smoother is another important part of a multigrid algorithm. A
"good" smoother complements the correction step by damping modes that the correction step
does not. However, as is often the case with numerical algorithms, the smoother that does the
best job of damping these errors is typically the most computationally expensive. For example,
line and plane methods arc generally better than arc pointwise methods at damping high fre-
quency error components, but they are computationally more expensive and less parallclizablc.

We use simple pointwise damped Jacobi (with weighting factor 2/3) and red/black Gauss-
Seidel smoothers in our MG algorithm. Although these smoothers are easy to implement
scalably in parallel, the resulting MG algorithms lack robustness. However, as we will see
(§3.6)~ we regain robustness by using MG as a preconditioner within a CG algorithm--without
the additional coding complexity (and possibly greater overhead) of a line or plane smoothing.

3.5. Coarsest grid solvers. To complete the multigrid algorithm, we must decide when
to stop the coarsening procedure, and how to solve the coarsest system of equations. For
example, should we solve the coarsest system of equations exactly, or just do a few smoothing
steps to obtain an approximate solution? In §5.1, we run several experiments in this regard,
and we conclude that coarsening down to a 1 × 1 × 1 grid is optimal for our algorithm and for
this application. The 1 × 1 × 1 "syste~n" is solved exactly via one sweep of red-black Gauss-
Scidel. (We employ CGHS and red/black Gauss-Seidel as our coarse grid solvers. One could
also consider a direct solution of the coarsest grid system via Gaussian elimination, but the
iterative solvers are adequate for our purposes.)

3.6. Stand-alone multigrid versus multigrid as a preconditioner. Although multi-
grid (MG) algorithms are extremely fast, they tend to be problem-specific and less robust than
Krylov iterative methods such as conjugate gradients (CG). Fortunately, it is easy to combine
the best features of MG and CG into a multigrid preconditioned conjugate gradient (MGCG)
algorithm that is robust, efficient, and scalable. The main advantage of this approach is that
one can quickly implement a simple multigrid algorithm that is extremely effective as a precon-
ditioner, but perhaps less effective as a stand-alone solver.

The well-known PCG method (Orthomin implementation) [7, 10] is given 

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)

(3.12f)

(3. 2g)

P0 -~ 80 ~ Cr0

for i = 0, 1,... until convergence:

cq = (Api,pi)

Xi+I ---- Xi +

ri+l = ri -- o~iApi

8i+1 = Cri+l

end for



I~, the MGCG algorithm, the precoaditioning operator, C, is never explicitly formed. Instead,
(3.12e) is effected’,~, by applying the MG algorithm (3.1) to the residtml system of equations,
Ae = r, using ~n initial guess of e0 = ~. The resulting ~pproxima.te solution is s~_~_~.

When designing ~ preconditioncr ~br CG, one needs to insure that the preconditioning ma-
trix is symmetric, ~nd prefcrably positive definite. For multigrid preconditioning, this condition
is s~tisfied by doing an equal number of s~,mmctric smoothing s~cps botl~ bctbrc and after each
coarse grid correction. (The snmothing step is symmetric if the iteration m~trix of the associ-
ated method is sym~ne~ric.) However, thi~ is not necessarily required (see, e.g., [22]). Multigrid
~lgorithms also can be ~pplied to nonssmmctric problems (e.g., [12]) and to problems with
irregular meshes (e.g., [18]).

Our current implementation of MGCG is simple but effective. The MG preconditioniag
step consist~ of a single ~, -cycle (as defined abow~) with a choice of weighted Ja(:obi or symmetric
red/black Gauss-Seidel smoothing. We use an equal number, m, of smoothing steps before and
after correction. (In this paper, m = 1.)

4. :Parallel implementation. Th(.. MGCG algorithm d(.scrib(,d abox:c has been imple-

mented in PAIl.FLOW. a portable and scalable parallel flow simub~tor, the algorithms in
P.~RFLOW ~11 employ a s~raighttbrward (ta.t~: dc(’,omI::sitio~,~ ~pproach t: p~rallelism. Spcciti-

cally, problem d~ta is distributed across a logical, thre.(.-dime,nsi(,nal p:oc(..ss grid topology con-
sisti~g of P = p x q x r processes. The data ~ithin a process is viewc(l as a three-dimensional
,subgrid Ofisgridcalledi)oints (as defined by ~he discrc~:iz~t, io~ of equation (2.1)). Vector dat~ owned 
a proccss a subv~ctor, and (,ach element of a subvcctor is associated with a grid point
in the process’ subgrid. ~im~a~:~y, matrix data owl, rod by a proccss tbrmsasubmatr~x..[he
rows ol’ this subm~trix ¢~rc vie, w(..d as stencils, ~nd c.ach stencil is associated with a grid point
i~t the proccss’ subgrid. Note that although we distribute the ~)roblem data 1)~, decomposing
the problem domain, xve ~re not doing domain decomposition in the algorithmi(: sense. W(~ arc
soh, ing the full problem rather t~an independent subproblcms. ,

Computations i~t PAitFt, ox~ proceed in ;~ owner co~qrutes thshion. ]hat is, processes
only do computatio~ts associated with their local subgrid, taking care to exchange data with
neighboring processes when needed. For examl)lc, consider matrix-vector multiplication, y 
Ax, a key operation in the C,G solver. To compute the matvec result at a given grid point
(i,j, k), ~vc "apply" the stencil to the grid: For each neighboring grid point specified by the
stencil, we multiply tim vector value at that point by the corresponding stencil coefficient, and
then sum these products. (This is equivalent to multiplying a row of the matrix A by the
vector x.) However, at subgrid boundary points, so,no stencil coefficients may reach outside
of the process’ subgrid. A~ these points, wc must first communicate dat~ from neighboring
processes. In general, these communications pa~terns can be quite complicated. ~ke,
example, pointwise red/black Gauss-Seidel. 13efor~ a process can do a red sweep, it must
exchange black boundary data with neighboring processes. Likewise, red boundary data ~nust
bc exchanged before a bl~tck sweep can be comph~ted. In order to simplify coding and speed
application development, subvectors and submatrices lmvc an additional layer of space set aside
for storing this communicated botmdary data. The grid points associated with this layer arc
called ghost points.

When possible, the communications and computations in PA~Fbow are scheduled so that
they overlap. For ex;~mplc, in our matw~c operation--for which the matrix A has a standard
7-point stencil---.the computations away from subgrid boundaries ca~ bc done independently
of the boundary data communica.tions. If the parallel machine has the appropri~tte hardware
support~ we can do these computations and communications simultaneously. On most machines,

10



and for most large problems, the communications will finish before the internal computations
have co~npleted, effectively masking the communications costs. Unfortunately, the CRAY T3D
does not pro’vide this support.

We remark that PAI~FLow was designed to be parallel from its inception. In particular,
computations are organized so as to avoid explicit data redistribution, thereby improving the
code’s efficiency and parallel performance. The choice of process grid topology P can have
a significant impact on performance, largely due to cache issues [6]. Thus, in choosing the
topology P, one must weigh the competing needs of various portions of the code and determine
the best overall topology. One should not choose different topologies for different stages of the
calculations and redistribute data within the simulation.

4.1. Scalability. One of the attractive features of multigrid is that it can be a scalable
algorithm, ~neaning that the number of iterations required for convergence remains roughly
constant as the grid is refined. This is true for both stand-alone multigrid and multigrid
preconditioned conjugate gradients. The emphasis on can be is meant to stress the importance of
properly defining thc various key ingredients, especially the prolongation/restriction operators
and the coarse grid operator. However, having a scalable algorithm is only half the equation:
one also must have a scalable parallel implementation. Since we semi-coarsen to a 1 × 1 × 1
problem, it is impossible for us to have a truly scalable parallel implementation since the nu~nbcr
of semi-coarsenings increases with the size of the problem (in a logarithmic fashion). Although
the amount of ~vork and the amount of communicated data per processor re~nains the same, the
number of communicatio~ calls increases as the problera size increases (since communications
are needed at each grid level in the V-cycle). This increased communication overhead is the only
impediment to perfect scalability of the MG algorithm. For all practical purposes, however,
both our algorithm (number of iterations) and its implementation (CPU tirne) are scalable, 
we will show in §5.

Since we sc~ni-coarsen the fine grid to a 1 x 1 x 1 problem, a rather severe load imbalance
results from the infamons "idle processor problem". However, this is not as serious as it might
at first seem. In simulating groundwater flow through heterogeneous porous media for large
sites, one must use a large nu~nbcr of spatial zones--often in the tens of ~nillions. For such large
problems, comparatively little work is being done while processes are idle (usually processes
arc idle at only a few of the coarsest grid levels). Hence, the effects of this inefficient use of
resources is usually negligible. See, for example, [8, 9].

Finally, we comment that the CG part of the MGCG algorithm also is not perfectly scalable.
This is because process data must be globally summed in order to compute the inner products
needed in the algorithm. The colnmunications required to do this grow logarithmically with
the number of processes, but the effects of this increased communications is negligible (§5.5).

4.2. Portability via message-passing. We have successfully run PAr~FLOW (in various
incarnations) on the following platforms: a single Sparcstation, a cluster of Sparcstations, 
multiprocessor SGI O~yx, an nCUBE/2, an IBM SP-1, and the CRAY T3D. Portability is
realized via message-passing. All message-passing primitives are localized within a machine-
dependent library called AMPS, which has been layered on top of several message-passing
systems, including the Reactive Kernel, PVM, Chameleon, and CRAY SHMEM calls. An MPI
implementation is planned.

5. Numerical P~esults. In this section, we will investigate the performance of our multi-
grid algorithm in several contexts. In particular, we will study the effect of the following on
the rate of convergence: (i) choice of boundary conditions, coarsest grid size, and coarsest grid
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~.BLE 5. i
Coarse grid solution strategy: no-flow bounda~’y conditions on the top and bottom; Dirichlet ([I = 1) condi-

tions on the four vertical faces.

Coarse Grid Solver
lstepofRBon3×3×3
CGHS on 3 × 3 × 3
CGHS on 5 × 5 × 3
lstepofR.Bonl ×1×1

MG
ters I time
111 I 18.6
58 I 10.9
22 I 4.9

__ ALl.

MGCG
_iters [ time

21 I 3.8
19 3.9
14 3.5
10 2.1

solver; (ii) increasing the resolutiou (fixed domain size); (iii) enlarging the domain size 
grid spacing); and (iv) increasing the degree of st, bsurfacc heterogeneity. We also will describe
the algorithm’s parallel performance on the CRAY T3D massively parallel computer.

All of the experiments in this section arc of the following form: The do~nain, ~Q = L~ ×
Lu × Lz, is a parallelepiped, where L~, L:~, aad Lz represent the domain lengths (in ~neters) 
the x, y, and z directions, respectively. The grid is Cartesian with N = n~. × .n,~ × n~ points
and A = A~. x Ay × Az spacing. The subsurf~acc is assumed to be a singh;, heterogeneous
hydrostratigraphic unit with variable hydraulic conductivity K. To generate K, we use a
turning bands algorithm [23] with geostatistical parameters #, o, ,~,, A,j, and X... Here ln t~ and
cr represent the mean and standard deviation of the In K field (Z~ also may be thought of as the
geometric mean of K), and ,\.~, Au, and ,~ represent the correlation lengths in the x, y, and
z directions, respect.ively. Uuless otherwise stated, wc imposc Dirichlet boundary conditions
(hydraulic head, H = h. -~- z, equal 1) on the tbur vertical sides of the domain, and no flow
conditions on the top and bottom.

We consider three multigrid algorithms for solving the symmetric positive definite system of
linear equations that results fl’om the discretization of the elliptic pressure equation. Specifically,
we compare the following: stand-alone ~nultigrid with s.ym~rmtric pointwise red/black Gauss-
Seidel s~noothing (MG); MG as a preconditioner for the conjugate gradient method (MGCG);
and MGCG; but with damped Jacobi smoothing (MJCG). The preconditioning step consists
of a single MG V-cycle. As discussed in the previous section, the smoothing operation should
be implemented in a symmetric fashion when multigrid is used as ,~ preconditioner in PCG.
For comparison, wc also c.onsidcr PCG with 2-step Jacobi preconditioning (J2CG). Each 
the algorithms was halted once the 2-norm of the relative rcsidual was less than 10-:~. Unless
otherwise noted, we used P = 2 × 4 × 4 processors of the CRAY T3D. (Some of the larger
problems required a larger number of processors because of their memory needs.) All times are
wall-clock times, and they are given in seconds. Although the test problems arc contrived, they
serve to illustrate the pertbrmance of the MGCG algorithm.

5.1. Effect of coarsest grid solver strategy. In ~,tblcs 5.]. and 5.2 we study the effect
on convergence rate of the choice of coarsest grid solver strategy with respect to the type of
boundary conditions. The experiment details are as follows:

~ = 1024 × 1024 × 25.6
N=65×65×33, A=16×16×0.8

It=4, o=1.5, ,~=32, ~.~=32, ,~:=1.6

Let us consider first Table 5.1, in which wc employ our "standard" boundary conditions:
m~ flow on the top and bottom faces, a~,d co~lstant head (H -= 1) on the remaining vertical
faces. Lct us also fbcus first o~, the issues related to multigrid. In row one, we coarsen to a
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TABLE 5.2
Coarse 9rid solution 8tra~egy: Dirichlct (It = 1) boundary conditions on all faces.

Coarse Grid Solver
1 step of RB on 3 × 3 × 3
CGHS on 3 x 3 × 3
CGHS on 5 × 5 × 3
1 step of RB on 1 × 1 × 1

MG
iters ] time

12 2.0
12 2.2
12 2.1
15 2.8

MGCG
itcrs I tilnc

8 1.6
8 1.7
8 1.7

10 2.1

3 × 3 × 3 coarsest grid and then do one step of red/black GS. In row two, we again coarsen to a
3 × 3 × 3 coarsest grid, but solve the coarsest system "exactly" via CGHS (which converged to
machine tolerance in three iterations). This improves the convergence of MG considerably. The
rcmson for this is that the system of equations on this coarsest grid is "ahnost singular" becausc
of the strong coupling in the direction of a flux boundary condition (i.e., the z direction).
Consequently, errors with "smooth" z components arc not damped well by one step of GS
s~noothing.

In row three, we coarsen as in row two, except that we stop at a 5 × 5 × 3 coarsest grid.
We again use CGHS to solve this coarsest system; this time, it took 34-36 iterations to solve
thc coarsest grid proble~ns to the specified tolerance (relative residual less than 10-9). 
sec further significant improvcment in convergence. To explain this, consider coarsening the
5 × 5 × 3 grid first in x, and then in y, to a 3 × 3 × 3 grid (as in the algorithm of row two).
In each of these coarsening steps, wc are coarsening in a direction orthogonal to the direction
with strongest coupling (i.e., the z direction). These non-optimal coarsening steps actually slow
convergence.

In row four, we coarsen to one eq~,ation in one unknown and solve it exactly via one step
of red/black GS. This is the best method for this problem. Here, the heuristic semi-coarsening
strategy coarsens in z in the "optimal" way until the z direction is eliminated altogether (thereby
eliminating anisotropy in the z direction). This results in a coarse grid operator that looks like
a 2D Laplacian. The remainder of the V-cycle (wl,ich involves coarsening only in the .~ and
y directions) gives a good approximation to the solution of this system. Hence, this multigrid
algorithm pcrforms quite well.

The MGCG algorithm performs similarly for each of the experiments, except that it is much
faster. Notc that there is only a slight difference in iteration count between rows one and two,
~,nlike for stand-alone MG. This is an indication that the MG algorithm in row one is having
trouble with just a few of the modes, which the outer CG loop in MGCG easily eliminates.

In Table 5.2, we repeat these experiments with constant head (H = 1) on all six faces.
The results are entirely differcnt. First, wc observe much faster convergence in this set of all-
Dirichlet experiments. This is largely due to the near-singularity of thc coarse grid matrices in
the previous table, as discussed earlier. For the all-Dirichlet problems, it can bc shown that
both red/black GS and CGHS will solve the 3 × 3 × 3 coarse grid problem in just one iteration.
Since red/black GS is cheaper than CGHS, it is faster, as observed in the table. It also can be
shown that CGHS will solve the 5 × 5 × 3 coarse grid problems in just nine iterations. Although
thc algorithm in row three takes a bit longer to solve the coarsest grid problems, there is less
semi-coarsening than in rows one and two, and the overall algorithm is competitive. Second,
we ~,oticc that the worst case in Table 5.2 (row four) is the best case in Table 5.1. Since
our finite volume discretization is vertex-centered, the boundary condition equations are not
coupled to the other matrix equations. This, combined with our algebraic definition of the
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T^BLB 5.3
htcreasin9 the spatial resolution: the domain size is fixed while the number of 9rid points is increased.

/ ~7 I ]7 I - g tl-~sWI ~.i II ~ I 0.3 [I g I ~~-I~]/

" ’al o. 11 0. 11
/ ~Sl ~Sl ~3[l~S~Sl s"~ll ~Sl ~’~11 ~°1 2"~11 ~sl 3"4/
/ ~1~1 CSSll ~7°61 z~2.~ II ~61 ~o.s II ~1 ~2"~ II 2~i ~°’~/

*These times are for 2fi6 processors (P = 4 x 8 x 8)

prolongatio~ operator, results in prolongation coeg]cients ~hat are zero ~t grid points near
Dirichle~ boundaries. Hence, the n~ x .n. u x 3 coarse grid obtains no e~c~ive correction from.

the coarser n~ x nv x"2 grid, which slows convergence of the algorithm.
We remark that the mixed boundary conditions used in Table 5.1 art~ more likoly to arise

g.~. Increasing the Spatial ~esolug[on. In ~able 5.~, wc study the effect on conver-
gence rate of increasing ghe spatial resolugion. Specifically, wc increase the number of grid poings
used to resolve each correlation length, but keep the problem domain fixed. (We start with two
grid points per correlation length and increase to 32 grid points per correlation length.) The
experiment details are as follows:

D = 1024 × 1024 x 25.6
._A = 1024.0/(n.~ - I) x 1024.0/(ny -- i) x 25.6/(n.. 

1~.---4, a=l.5, A:~=128, A:~=128, A...=6.4

We sec that increasing the spatial resolution has a significant effect on the convergence
rate of J2CG (as expected), but has little cflhct on the MG-based algorithms. Specifically,
th(~ J2CG iteration count doubles when the resolution doubles (i.e, problem size increases 
23), but MGCG converges in about ten iterations independeut of resolution. As the resolution
i,lcreases, J2CG becomes increasingly impractical, aud one must use a multigrid approach. For
example, in the 257 x 257 x 1.29 case, J2CG takes about 120 times longer to converge thau
MGCG, and this multiplier would grow if wc increased the problem size further. Note also,
that although MJCG takes more iterations to converge than MGCG, it converges a little faster.
This is due to two things: (i) Jacobi has less communication overhead and, in general, runs at 
higher MFLOP rate than red/black GS; and (ii) in MJCG we do two smoothings per grid level,
but in MGCG, we. do three smoothings because of an extra half sweep that is done to insure
symmetry. Note that the stand-alone MG algorithm is uot as effective as MGCG because of
problems with a few extra,mous modes (as explained earlier).

We remark th~,.t if we did not se~ni-coat’sen to a grid with only 1 grid point in tile z direction,
the iteration counts in the first few rows of tile table would be higher. This is because tile first
semi-coarsening in an x or y direction would occur not because the coupling iu these dircctious
was strongest ("optimal" coarsening strategy), but as a result of having too few z points.
As discnssed i,~ §5.1, this would have an adverse effect on convergence which would be more
prouounced fo," the smaller problem sizes. See [4] for related experiments.

Remark: The overall slow convergem:e of J2CG results partly fl’om anisotropy in the prob-
lem duc to the skew(,d grid cell aspect ratio. This is a consequence of how the eigenvalucs of 
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Enlarging the

Problem

17 17
33 33
65 65
129 129
257 257

TABI,E 5.4

domain size: the grid spacing is fixed while the number of grid points is increased.

J2CG
iters time
453 1.1.
957 5.7

1860 56.0
3665 763.4
6696 "1403.8

times are ~r

MJCG
iters time

11 0.3
13 0.5
16 2.0
18 12.1

NA

256 processors

Size

9
17
33
65
129

*The~e

MGCG
itersI time

9 0.4
10 0.7
10 2.1
11 12.6
13 "15.1

P=4xSx8

MG
iters time

12 O.4
14 {}.9
19 3.6
21 20.6
22 *22.8

are distributed. Whcn the grid cell aspect ratio is near 1:1:1, the eigenvalucs are more tightly
clustered in the middle of the spectrum~ and the effective condition number is less than the
true condition number. (Recall that the CG rate of convergence is governed by the effective
condition number, not the true condition number, because CG is able to damp outlying eigen-
values quickly.) When the grid cells are skewed, the eigenvalucs cluster near the endpoints of
the spectrum, and the effective and true condition numbers are nearly identical. Moreover, the
flux boundary conditions on the z faces result in a larger effective condition nmnber than would
Dirichlet conditions, reducing further the effectiveness of J2CG on this problem.

5.3. Enlarging the size of the domain. In Table 5.4, we study the effect on convergence
rate of growing the domain size. In some remediation studies, one wishes to enlarge the initial
site to encompass neighboring property. This might be necessary, for instance, if a contaminant
wcre discovered to have migrated off-site. In such a scenario, the engineer might wish to use the
same geostatistics and grid spacing, but enlarge the domain by increasing the number of spatial
zones. In our experiments, we maintain a constant two grid points per correlation length. The
experiment details are as follows:

~ = (n~. - 1)A~ (nu- 1)u x (nz-- 1)Az
A=4x4x0.2
~.=4, a=1.5, ~=8, ,~y=8, ~,=0.4

The results in Table 5.4 are qualitatively and quantitatively similar to the results in Ta-
ble 5.3. The minor differences in the two tables are due to the differing subsurface realizations
(produced by turning bands) in the two experiments.

5.4. Increasing Degree of Heterogeneity. In Table 5.5, we study the effect on conver-
gence rate of increasing the degree of heterogeneity. This heterogeneity is represented by the
parameter a described earlier. Tim experiment details are as follows’.

f2 = 1024 × 1024 × 25.6
N = 129 x 129 × 65~ A=8xS×0.4

lz=4, ~x=16, ~y=16, ,~z=0.8

The first row in the table (a = 0.0) corresponds to a homogeneous subsurface medium,
in which casc the coefficient function K is constant, and so the matrix A is Laplacian-likc.
As a increases, so does the degree of heterogeneity. Specifically, the variance, a/2¢, of the
lognor~nally distributed conductivity field K increases exponentially. This variability in K
causes the coefficient matrix A to becomes increasingly ill-conditioned. The effect on MG of
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3.’~ r~L1~ 5.5
Varyin.q the degree of hetero.qeneily.

HeterogeneityI J2GG - M----M-G-C--~- MG
~ ~i iters I time iters~ time it~ time

o°- I
0.5 6 x 100 3121 [ 650.3 9 10.4 13I 12.8
1.0 7 x 10~

, 3388 I 705.7 9 10.,1 12I 11.8
1.5 1 x 103 ’ 3670 I 764.6 11 12.5 22 I 21.6
2.0 4 x 10’~ 4273 I 889.5 17 18.8 diverged
2.5 4 x 106 5259 I 1094.4 26 28.2 d~verged

1E+O0 ’

"O
¯ ~ 1 E-02

~ IE-04

O 1E-10

J2CG MGCG

~ ....... 0.5
...... 1.0

~ .... 1.5
-,~ ....... 2.0

’ ~2.5,.

1~0 2~0 3000 40~ 50~ 60~

Number of Iterations
0 5 10 15 20 25 30

Number of Iterations

1"I(.~. 5.1. Convergence plots for .I’26’(~ and MGCG for several values era (as iu "1’aide 5.5). As cr increases,
subsurface realization becomes mare heterogeneous, and tile underlyin.v matrix problem becomes mo~,e difficult.

this increasing heterogeneity is significant, and we see that for two of the runs, it actually
diverges. However, when MG is used as a preconditioncr for CG (MGCG), convergence 
obtained in each case. Note ttmt the iterations for MGCG grow like the order of the v~ri~ncc.
The convergence of J2CG is poor, as cxI’~ected.

Convergence plots 1br J2CG and MGCG are given in Figure 5.] ~br each of the va.lues of
o in Table 5.5. Notice that the MGCG convergence curves arc nearly linear and quite steep
in comparison to J2CG, indicating that MGCG is making rapid ~,nd steady progress toward
the solution. (The log of thc 2-norm of the rcla.tive residual is plottcd ~tgainst the number of
iteratior,s required for convergence.)

5.5. Parallel performance on the C~AY T3D. In earlier experiments [6], we exam-
incd the parallel performance of the PARFLOW simulator and its component routines. In this
section, we reprise timse experiments with respect to the multigrid algorithm. Specifically,
we will examine the scalability of the MGCG algorithm on the CI~,AY T3D massively parallel
computer system. The results given here differ from those in [6] ~br several reasons, including
compiler upgrades, algorithm enhancements, and coding improvements.

In Figures 5.2--5.3, we present scaled speedups for the m~trix-vector multiplic~tion, multi-
grid preconditioning, ~.nd MGCG routines on the Cl~.AY T3D. Our machine has 256 nodes,
each consisting of a 150MHz DEC Alpha processor a.nd 64MB of memory; our AMPS message-
passing library is layercd on top of Cray’s SHMEM library. In our experiments, each processor
is given a 64 × 64 × 32 subgrid, so that the total problcn~ size on P = p × q x ’r processors is
/~rp = 64p x 64q x 32r. In o~.hcr words, we allow the total problcm size to grow with P. More-
over, the shape of the problem domaia is determined by the process grid topology p x q x r.
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FIO. 5.2. Scaled speedup of the ParI,’low matrix-vector multiplication and multigrid preconditioning routines
on the ORAY T3D.
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FIG. 5.3. Scaled speedup of the ParFlow MGCG routine on the CRAY T3D. The figure on the left shows
the scalability of the MGCG implementation (via MFLOP rates); the figur~ on right shows the scalability of the
MGCG implementation and algorithm (via timings that include the effects of differing iteration counts).

The point of this study is to see how well the routines make use of additional processors. Our
goal is to obtain ncarly flat curves (good scalability) that are near one (good scaled efficiency).

The first three graphs in Figures 5.2-5.3 measure the scalability of our implementations
of the matvcc, MG, and MGCG routines in terms of MFLOPs. Specifically, we define scaled
speedup to be Mp/l~I1, where MI, is the MFLOPs achieved by the operation in question on P
processes. The scaled speedup graphs arc all fairly flat, indicating good scalability. The MG
and MGCG routines have nearly identical performance (about 80% scaled efficiency) because
MGCG spends most of its time in the MG preconditioning routine. The matvec routine has
lower scaled cfliciency (about 65%) because it has a much higher MFLOP rate than the other
routines, and so communication costs are relatively higher. (The matvcc, MG, and MGCG
routines averaged 2.12, 1.25, and 1.37 GFLOPs, respectively, on 256 processors.) Thus, all
three routines are scalable, meaning, for example, that the time per MGCG iteration remains
constant as we increase the problem size and number of processes in tandem.

In the last graph (Figure 5.3), we measure MGCG scaled speedup in terms of CPU time.
That is, we define scaled speedup to bc T~/Tp, where T~, is the time required to execute the
MGCG algorithm (to convergence) on P processes. Since the number of iterations required for
convergence fluctuates with P, this graph measures the combined scalability of the algorithm
itself and our implementation of it. We also plot MGCG iteration count, which varies between
20 and 26 iterations (using the C-norm stopping criterion). Notice the inverted relationship
between scaled speedup and iteration count (as one would expect).

Remark: Onc might expect the number of MGCG iterations to increase monotonically
with the size of the problem (which grows with the number of processors), but this is not the

I?



case. Recall that in our definition of scaled speedl~p, the computational domaii~ is growing ¯
with P--and changing shape as we move from on6 process grid topology to the next. This
means that the eigenstructurcs of the underlying matrices change fi’om one run to the next,
which accounts for the up-and-down iteration counts. ~,¥e could largely, eliminate this effect by

k,e, eping the domain fixed and increasing the resolution as we grow tl~e problem size, but this
~ould require varying the topology of the subgrid assigned to each processor. As discussed in
[6]. this can have a dramatic impact on node performance, causing another set of problems. (I.n

our experiments, we used the following process grid topologies: 1 x 1 x 1, 1 x 1 x 2, I x 2 x 2,
lx2x4,1x4x4,1x4xS, lx8x8,1x8x16,2xSx16.)

6. Summary. This paper ibcuses on the numerical sinmlation of groundwater flow through
heterogeneous porous media. The key computational challenge is the solution of a large, sparse
system of linear equations for the pressure ti?ad. The size of the sites to be modeled (on the
order o~, kilometers), and the need, to r(,solvc subsurface hcterogeneities (to within a few 

ters), necessitates the use of effici¢,nt numerical methods a~d the power of massively parallel
processir~g. In this paper, we introduce a parallel multigrid preconditioned conjugate gradient
algorithm for sol:,ing ~hcse linear systems. ,

After defining tim various co~nponents of the. multigrid algorithm, and discussing its par-
allel implc~nent~tion, we investigated its pcribrmance in a variety of numerical experiments.
We considered the effects of boundary conditions, coarse grid solver strategy’, increasing the

"" ’" ", ’ "’ " - .. ,’ ¯ . ,, ¯ p , ", "e than 8M spatial zones
in under 13 seconds on a 256-processor C13.~,k T3D. Wc also demonstrated the scalability of

both the algorithnl and its inlplemcntation. ~ his solver has been incorporated in the PAYtFLOW
silnulator and is being used to enable detailed modeling of l~.rgc sites.
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